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Power-law tail probabilities of drainage areas in river basins
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We examine the appearance of power-law behavior in rooted tree graphs in the context of river networks. It
has long been observed that the tails of statistical distributions of upstream areas in river networks, measured
above every link, obey a power-law relationship over a range of scales. We examine this behavior by consid-
ering a subset of all links, defined as those links which drain complete Strahler basins, where the Strahler order
defines a discrete measure of scale, for self-similar networks with both deterministic and random topologies.
We find an excellent power-law structure in the tail probabilities for complete Strahler basin areas, over many
ranges of scale. We show analytically that the tail probabilities converge to a power law under the assumptions
of (1) simple scaling of the distributions of complete Strahler basin areas2aragpplication of Horton’s law
of stream numbers. The convergence to a power law does not occur for all underlying distributions, but for a
large class of statistical distributions which have specific limiting properties. For example, underlying distri-
butions which are exponential and gamma distributed, while not power-law scaling, produce power laws in the
tail probabilities when rescaled and sampled according to Horton’s law of stream numbers. The power-law
exponent is given by the expressigi In(R,)/In(R,), whereR,, is the bifurcation ratio anR, is the Horton
area ratio. It is commonly observed thBf~R, in many river basins, implying that the tail probability
exponent for complete Strahler basins is close to 1.0.
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[. INTRODUCTION there is a unique path between any two links in the network.
Strahler streams, or simply streams, are composed of collec-
Scaling theories play an important role in quantification oftions of continuous links and are defined according to the
scale invariance in physical systems. From the classical studdorton-Strahler ordering convention. This convention as-
ies of turbulencé1,2] to complex system analys€3,4], the  signs anorder to each stream, which we use as a represen-
appearance of power-law behavior has been seen as the sigtion of the scale of the stream. The leaves or souiltes
nature of scale invariance. Theoretical investigations of thavhich do not have any links upstream of theane defined to
scaling properties of natural hydrological and geomorphobe of order 1. Higher-order streams are defined in terms of
logical systems have provided a wealth of insights into thehe orders of the streams which drain into them. When two
development of complex system analyses and the descriptigtreams, which have same orders, combine at a node, the link
of emergent patterns. Geomorphology provides the basis fatownstream of that node is one order higher. When two
this paper, but the results presented here may be applicable $reams of different orders combine, the downstream link
a large variety of other physical systems. takes the greater order of the upstream links. Hence, if two
River network topology can be modeled as rooted binaryorder-1 streams come together, they form an order-2 stream.
tree graphs, where water flows from small branches intdf an order-2 stream and an order-1 stream come together, the
larger branches across a large range of spatial scales. Netewnstream link is order 2, extending the stream. Complete
works are composed of links and nodes: Links in the treeStrahler basins are sub-basins which drain directly into a
graph represent individual river channels and, when twdasin that has the higher order.
channels combine at their downstream ends, they form a The scaling properties of topologic and geometric net-
node. Nodes have two upstream links draining directly intowork properties have been extensively studied in river ba-
them and one link draining out. The entire collection of links sins. Models of river networks have been developed based
and nodes forms a treelike structure, with no loops, so thadn diffusion limited aggregatiof6—7], random walk models
[8—10], thermodynamics through principles of optimization
[11-14, as well as other physically based models. In addi-

*Email address: seth.veitzer@colorado.edu tion, power-law scaling exponents have been derived in the
"Email address: troutman@usgs.gov context of fractal geometry of river network5,16. Vari-
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analysis of drainage patterns, particularly in the context ofeached rapidly for basins with >5 or so. We use Horton’s
self-similarity and self-affinity. Some measures of scale indaw of stream numbers as expressed in Eg.to sample
variance deal with the scaling behavior of network branchingescaled distributions of basin area in our derivation of
structure, or network topology, independent of geometrigpower-law tail probabilities in this paper. Horton's law of
constraints. Scale invariance in network topology is referredtream numbers is an example of the classic Horton laws,
to as topological self-similarity, and has been formulated inwhich relate the average values of various topologic, geo-
terms of both the average branching structgreean self- metric, and geomorphologic variables at different scales. For
similarity or Tokunaga self-similarifyand the scaling of dis- instance, the Horton law for basin area is written in a form
tributions of the branching structurdstatistical self- similar to Eq.(1),

similarity).

There are three major analytic topological theories of K(wm
river networks which exhibit topological self-similarity, Q) —Ry, Q—o, 2
namely, the well-known random topology mod&7,18, the w-1

Tokunaga self-similar network modg19,20, and the ran- ~0) ) , )
dom self-similar networkRSN) model[21,22. The random WhereA,” is the average basin area at scalén a basin
topology model is a special case of the more general GaltontVith total orderQ) andR, is the Horton area ratio.

Watson branching processs], while the Tokunaga model Distributional simple s_calanDSS) implies that the sta-

is based on the average self-similar behavior of river netlistical distribution of a given variable measured at a given

works, and is a special case of the more general class Scale is a rescaled version of some underlying distribution
mean self-similar networkg21]. which is independent of scale. In the context of river basins,

The RSN model generates topologically variable nethe Strahler order is a natural choice for scale parameter, and

works that exhibit mean topological self-similarity and, as ath® rescaling constant has been shown to be the appropriate
special case, the Tokunaga self-similarity. In addition, netHorton ratio[22]. For instance, consider basin magnitude as
works generated by the RSN model show simple scaling oft tyPical topological variable. The magnitude is the total
the distributions of many topologic and geometric variablesPumber of first-order streams in the basin and can be consid-
with the Strahler order as the appropriate scale parametefred as the topological equivalent of basin area. In a large
The Strahler ordering is a natural way to collect the links infiver basin of total ordef}, there will be many sub-basins of

a nested network into streams which represent different digoWer order. Fixing a given ordep<(), the distribution of
crete scales. For instance, the RSN model predicts that tH8€ basin magnitudé1 ;) measured over all orden sub-
statistical distributions of the basin area at different scale®asins is a rescaled version of some underlying distribution,
(Strahler ordershave the same functional form, but are res-M, if the distributional simple scaling holds. Statistical dis-
caled by a constarf2?]. This type of scale invariance of tributions at different scale® and k can then be related,
statistical distributions is called distributional simple scalingsjnce both are rescaled versionshf We write

(DSS. The existence of DSS for complete Strahler basin

areas and the assumption that Horton’s law of stream num- d

bers(defined below holds predicts that the tail probabilities MDD =Re"kMD | p k<Q, Q- 3)

of cumulative upstream areas of complete Strahler basins

o . d
exhibit a power-law_form W'.th an exponent of m”n(RA)’ to denote distributional simple scaling, where means
and the demonstration of this result is the focus of this paper,

It has | b ized that the ratio of th b quality in distribution andRy, is a rescaling constant inde-
as long been recognized that In€ ratio of the num er.ogendent of ordew [22]. There is good evidence that natural
streams of successive orders converges to a constant. This

, rlVer networks exhibit distributional simple scaling for many
generally known as Horton's lavi of stream ”“”‘.befs- h opologic and geometric variabl¢&5]. Classic Horton laws
law of stream numbe_r S is an asymptotic result, with CONVETHre derived by taking the expectation of equations, such as
gence in the folloyvmg manner. Denote the nur?(ger Oqu. (3), and refers to relationships of means across scales
streams of ordew in a basin of total orde} as N,,™.  rather than of entire distributions. Scale invariance of statis-
Horton's law of stream numbers is then written as tical distributions extends to the geometric and geomorpho-
logic properties of river basins as well. For example, stream

NS’) lengths and basin areas exhibit distributional simple scaling
N(—Q)—>Rb, Q—co, (1) [25], as does the maximum of the width functif26] with
o+l the Strahler order playing the role of the scale parameter.

_ _ _ _ _ DSS of hydrologic variables is a generalization of Horton’s
whereRy, is the bifurcation ratio, which ranges from about Jaws, which may be obtained by taking the expectation of
4.1 1o 4.7 in natural river network24]. Equation(1) is valid equations such as E¢).

for ordersw<( in the limit the total basin ordef)—c. It has also been observed that the probability of ex-
Note that Eq.(1) defines the Horton law of stream numbers ceedence for cumulative upstream area above all links in a
as an asymptotic result, not in the limit—o; but rather network, sometimes also referred to as the cumulative area

there is a convergence of the ratio of the number of subdistribution (CAD), exhibits power-law behavior, written as
basins which may be of low order, but are nested in an over-

all basin which gets very large. In practice, this limit is P(A>a)~a ?, 4
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whereA represents the area above a link chosen at randomenerated self-similar networks. Deterministic self-similar
from all links in the network and is empirically observed to networks have the property that the branching structure of all
be close to 0.4327]. Power-law scaling of tail probabilities basins of a given order is identical. Thus, there is no way to
is generally seen as a signature of the scale invariance afiscuss distributions as a function of scale for deterministic
topography in river basin®5,28,29. The power-law behav- networks. However, we can use the identical nature of the
ior of tail probabilities for the area above all links will not be topology to derive the scaling exponent for the tail probabil-
addressed in this paper, rather we focus our examination aity. In the derivation below, we use a basin magnitude as a
the power-law behavior of exceedence probabilities for comproxy for basin area.
plete Strahler basins only. Complete Strahler basins are a Complete Strahler basins are defined as the basins up-
subset of all sub-basins, consisting of basins which drairstream from the links which drain directly into the links that
directly into streams that are of a higher order, and composkave a higher Strahler order. For instance, a side tributary to
more than half of all sub-basins in a given basin. See Sec. the main stream in a basin is a complete Strahler basin, be-
below. cause the Strahler order of the link at the outlet of the side
We show below that the power-law behavior in the tailtributary is less than the order of the main stream. However,
probabilities for complete Strahler basin ardédsfined be- sub-basins above a link in the main stream are not complete

low) is also observed, written in a form similar to B4, Strahler basins, because they drain into links which have the
same Strahler order. This choice of restriction is not arbi-
P(AS”>a)~a“”, (5) trary. Complete basins represent naturally defined elementary

units at a given discrete scale, defined by the Strahler order.
where AY) represents the area of a randomly chosen comJhis is important because, with the definition of a discrete
plete Strahler basin of order in a network of total ordef), ~ Scale parameter, it is possible to speak of statistical distribu-
and the scaling exponent=In(R.)/IN(Ry). Model predic- tions of variables as a function of scale, as will be done in

tions of the random topology model, Tokunaga self-similarS€c- 1. This is rjot poss_ible if a continuous scale parameter,
networks, and random self-similar networks predict tRat such as.th_e bas!n r_nag_nltude, is used. It has been shown that
=R,, which implies that¢=1.0. We show here that the the statistical distributions of the complete Strahler basin

power-law behavior in Eq(5) is a consequence of Horton's aréa exhibit distributional simple scalifge].

law of stream numbers and distributional simple scaling of 'N€ authors of Refs|34,24 examined the topological
complete Strahler basin areas. equivalent of the tail probability exponeutfor basins up-

Recently, the authors of Refé30—37 examined the dis- stream.o'f every Iink 'in a'networ(¢he CAD exponentfor
tributional scaling relationships in river networks. Among dete_rmmlstlc self-_3|m|_lar river networks. They found _that the
other results, they considered fluctuations and joint properSc&ling exponent is given in terms of the Horton ratios for a
ties of basin areas and stream lengths, distributional propeRUmber of links per streanRc, and the bifurcation rati&,
ties of side-tributary statistics, and theoretical models oftS
Hack’s law and their relationship to the CAD power-law
scaling. They also provide an analytic derivation of power- —1_ In(Re) 6)
law scaling for main stream lengths under the assumption of IN(Ry)
exponential distributions of stream segment lengths. In con-
trast, we concentrate in this paper on the derivation offhe argument in Ref.24] uses the equivalence of probabi-
power-law scaling due to the distributional simple scaling oflistic statements regarding the basin magnitude and the
basin areas and Horton's law of stream numbers, indeper$trahler order in deterministic self-similar networks to derive
dent of a particular choice of statistical distribution. Eq. (6). We extend the argument to complete Strahler basins

The authors of Ref.33] observed tail probability scaling below to show that for deterministic self-similar networks
exponents near 1.0 where they only considered a subset of dlle complete basin tail probability scaling exponentdis
basins. They defined main basins by considering links mov=1.0.
ing upstream from the outlet in the direction of the greatest Consider the probability that a complete Strahler basin,
contributing area. This selection method chooses essentiallshosen at random in a deterministic self-similar network of
complete basins, but also includes links along the mairotal order(), has a basin magnituds! less than some
streams of those basins. The existence of power-law scaliridpreshold valuem, where we have dropped the superscript
with an exponent near 1.0 for this subset of basins is possibl{{)) for notational simplicity. The probability is equal to the
a further indication that the power-law scaling seen for allprobability that the basin chosen has an oMéess than the
the links in a network is inherited from the more fundamen-corresponding threshold orderdue to the deterministic na-
tal power-law scaling of complete Strahler basins derivedure of the networkthe topology of every orden network is
here. identica). In other words, the two statements of probability

II. TAIL PROBABILITIES OF COMPLETE BASIN AREAS P(M<m)=P(W<wo) )

FOR DETERMINISTIC SELF-SIMILAR NETWORKS . . .
are equivalent, wherd is the magnitude of a randomly

We begin by examining the behavior of tail probabilities chosen complete Strahler basild,is the order of a randomly
for complete Strahler basins in the case of deterministicallichosen complete basin, andand w are the thresholds for
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magnitude and order, respectively, against which the tall 1\ In(m)/In(Rg) -1
probabilities are calculated. The probability that a randomly P(M Zm):(R_)
chosen basin has an order less than some threshoisl B
simply the total number of basins with order less than —In(m)/n(Re)
normalized by the total number of basins, =RgRy ®

w-1 o _R.RRe(M)

P(W<w)= > N / > N, ® oe
K=t K=t =Rg(1/m), (17)

Using the asymptotic expression for a number of streams,

QO OQ—w+1
N ~R2- e+

valid for a large total network orde, Eg. (8) can be re-

written as

Q 1 k
RO*1 _) .
B k2 1 \Rg

w—1 1 K
P(W<w)=|RE"? (—)
(Wew) { B kgl Rg

/

9

indicating that the scaling exponent should have the value
¢=1.0.

Ill. TAIL PROBABILITIES FOR COMPLETE STRAHLER
BASIN AREAS FOR SELF-SIMILAR NETWORKS
WITH VARIABLE TOPOLOGIES

By exploiting the equivalence of probability statements in
deterministic self-similar networks, we have shown that the
tail probability for complete Strahler basin areas has an ex-

Defining p=(1/Rg) Eq. (9) can be written in the standard ponent of¢=1.0. However, natural networks exhibit topo-

form of a geometric series and summed to become

/
=/ 155

=[1—|0‘”l]/ [1-p%], (12

w—1

QO
P(W<w)= kEO pk—1 .Z‘o pk—l} (10)

(11)

which can be simplified, under the condition ti§at- oo, to
become

P(W<w)=1-p® L (13

P(W=w)=p® 1, (14)

which is ageometric distributionwith parameter (*p).

logical variability, in which sub-basins of the same Strahler
order have different branching structures. We derive below
the convergence to a power law of the tail probabilities for
complete Strahler basin areas for a large class of underlying
basin area distributions. This derivation is valid under the
assumptions that the distributions of the complete Strahler
basin area exhibit distributional simple scaling, and the ap-
plication of Horton's law of stream numbers. The DSS of
complete Strahler basin areas has been observed in natural
networks[22]. In addition, the RSN model predicts DSS for
complete basin areas. We express distributional simple scal-
ing as

A(Q) d
C=A;~Fp, (18

w—1
RA

@) | istical distributi -
Hence, the probability of exceedence for the Strahler order iwhereAw 'S the statistical distribution of complete basin

S ; o
area at scale, R, is the Horton area ratidy, is the under-

lying distribution of basin area, which we denoteRgs, and
9 denotes the equality in distribution. We will also use the
empirically observed relationship between the number of

For a large total network order, the magnitude as a functiostreams at different scales, referred to as Horton’s law of

of order obeys the asymptotic relation

mM(w)~Rg.

stream numbers[see Eq.(1)]. Given the distributional
simple scaling for complete Strahler basin areas, we pick a
complete stream at random, with probabiliy{®/N{)
where

Inverting this relationship the order can be expressed in

terms of the magnitude as

In(m)
In(Rg) *

w(m)= (15

Inserting Eq.(15) into Eqgs.(14) and(7) gives the relation
P( M Zm)oc p{ln(m)lln(RB)}—l_ (16)

Recalling the definition op, Eq. (16) can be simplified to

N(Q)Q): Ng-Q)(Rgl)wfll

Q
N§™) = 0)2:1 N (19

HereN{ is the total number of streams in the network. The
resulting distribution of all complete basin area§ is a
mixture over the order area distributions
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Q o T
PIA{Y>u]= > PIAFY>ulAf =AY TPIAE = AL .
w=1 —— rder
(20) F —— Order 2
r ——— Order 3
Q (Q) . o Order 4
= L (Q) ) - ——— Order 5
w=1 N(Q) P[Aw >u] (21) 2 = Order' &
T E r ——— Order 7
Substitution from Eqs(18) and(19) gives g I zjez
NI ’
Q) - -Lyo—1] 1 _ r 1
PIAT == (i 2 (R | 1-Fa| o i _
(22) 15 : el ‘
-20 -10 0 10 20
N(Q) Q-1 109;0(a)
__1 —1yorq _ -l
N 2 (RyH[L=Fa((RyH) W], :
(23) ]
We rewrite Eq.(22) in the limit 3 — oo, ]
(Q) N(lm N(lm S (1+7) s ]
=_- - - —i(l+vy —i z ]
PIAFY>ul= gy Sw =gy 2 1" 7G(ur ), ; 1
T T T ]
(24 = ]
where *
G(x)=1—Fa(x), (25 .
r:RA, (26) —WZE“‘ (I T B T T S
-10 =5 0 5 10 15
l0g;0(a)
rt* =Ry, (27)
FIG. 1. (Color) Demonstration of the generation of power-law
INRy tails in the probability of exceedences. Each rescaled distribution is
1+y= m, (28) shown (here gamma distributed colored according to its scale

(Strahler order The number of points in the individual distribu-
tions represent the number of samples according to Horton’s law of
stream numbers. The samples are gathered together in a single dis-
tribution which is seen to exhibit a power-law behavior.

and we identifyw=i for notational convenience. We dem-
onstrate in the Appendix that for a class of underlying distri-
bution functionsG, except for a term involving small har-
monic corrections, the sui§(u) in Eq. (24), and hence the pytion is sampledN'® times and the samples are collected
tail probability for complete Strahler basin areas, takes theqig 5 single distribution, as shown in the figure. The com-
asymptotic form posite distribution shows an excellent power-law tail behav-
ior over a large range of scales. In the figuRy,=R,=4.2
~ L andN'Y is chosen to be the integer closestRﬁ_“’. The
S~ (29 v . ! .
value of the scaling power-law scaling exponent is close to
1.0, as indicated by the equality Bf, andR, . Similar simu-
predicting that the tail probabilities for complete basin areadations withR,# R, show a very good correspondence with

exhibit a power-law behavior with the exponent the expression given in E¢30).
Figure 2 shows the power-law tail behavior for complete
_ InRy, (30 Strahler basins in the Flint river in Georgia, USA. The Flint
T InRy’ basin covers~6500 knf and has a total order 7 when ex-

tracted from the USGS 1° digital elevation models. The
Figure 1 shows the production of a power-law tail behav-power-law behavior is observed over a large range of scales.
ior through DSS and Horton’s law of stream numbers. Indi-Figure 2 also shows the tail behavior for upstream areas
vidual distributions of basin area’") at each scales are  above all links in the network for comparison. Note that
shown, colored according to scale. The individual distribu-there is also a range of scales over which an approximate
tions of basin area are rescaled versions of the underlyingower-law behavior is seen. However, there is more devia-
distributionF ,= A, which is gamma distributed and they do tion from the power-law behavior and a pronounced dropoff
not exhibit a power-law tail behavior. Each individual distri- at large scales compared to complete Strahler basins.
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T ] sins. As can be seen from the table, the basin area Horton
ratio R, is generally greater thaR, andRy,, by as much as
about 10%. However, the predictions for the scaling expo-
nents¢, and ¢,,, based on the analysis of this section, are
close to the observed values.

IV. SUMMARY

Understanding the key geometric properties of river net-
works is essential for understanding how the physical pro-

log,o [ P( Basin Area > a) ]

s 4 ] cesses work to shape land surfaces. One recently observed
A property is the power-law scaling behavior of the tail prob-
| R | abilities for cumulative upstream areas, which is an indicator
-1{5 e e of the scale invariance of land surface topography. We exam-
Flint River Basin log;e(a) ined here the underlying statistical and scaling structure of

complete Strahler basin areas, which gives rise to a power-
law scaling in tail probabilities. We found that when only
complete Strahler basins are considered, power-law tail prob-
abilities for the upstream area arise as a consequence of dis-
tributional simple scaling of basin areas coupled with Hor-
| ton’s law of stream numbers. The scaling exponent for
- complete basins is well predicted by the ratio of the loga-
| rithms of the bifurcation ratio to the Horton ratio for basin
areas.

] The existence of power-law scaling as a direct conse-
3 1 quence of distributional simple scaling may indicate that the
b ] power-law scaling observed for areas above every link in a
3 1 network can also be understood in a simple scaling frame-
I | work. Such a formulation remains an open problem.

l0go [ P( Link Upstream Area > a) ]

> >

—-10 L L L 1 L L L L 1 n L L " 1

5
Flint River Basin log,s(a) ACKNOWLEDGMENTS

FIG. 2. (Color) Power-law tail behavior for the probability of
exceedences for complete Strahler basins in the Flint river basi
The slope is consistent with that predicted by the analytic theor
For comparison, the probability of exceedences for all links in th
Flint river basin is shown in the lower figure.
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APPENDIX

Table | shows a comparison of various predicted and ob-
served values for four large basins in the United States. "Ea
the table, empirically calculated Horton ratios for a number
of streamsR,, basin areaR,, basin magnitudeR,,, and -
number of links per streaR: are provided for comparison. 2 P NGur
¢a is the estimated scaling exponent for the tail probabilities =0
for basin area, both calculated according to E3f), while
¢ is the scaling exponent for basin magnitude, calculated
in @ manner similar to Eq30), but with magnitude taking “Inr ultr
the place of area. The exponedtis the empirically esti-
mated basin area scaling exponent for complete Strahler ba-

We show here that the sum given in Eg4) asymptoti-
lly takes the form

{M[G;Hv]

” : 2nim
+22 u‘2“'”"“'M(G;1+ Y+ ”
=1
TABLE |. Comparison of tail probability variables for four em- K

pirical basins. (A1)
Basin R, Ra Ry Rc  ¢éa  oéu ¢ whereG(ur')=1—FA(ur~") is the underlying cumulative
1 445 490 462 261 094 098 o001l ;jolfrtTr][bunon function(CDF) andM[G;z] is the Mellin trans-
2 4.54 4.70 4.43 2.59 0.98 1.02 0.94 '
3 4.40 4.85 4.52 241 0.94 0.98 0.93 -
4 4.56 4.67 4.42 2.45 0.98 1.02 0.99 M[G;Z]:f XzflG(X)dX. (A2)
0
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The derivation follows the similar lines of RdB1], but is a
generalization from the case whe®{x)=e * which they

derived. Under certain assumptions on the functional form of

G explained below, the functioM[G;1+ y]=0(1), while
M[G;1+ y+2niw/Inr]=0(e ") asn— . Thus, the sum in
guestion converges to a power law with exponeit)l We
begin by following the argument of Ref31], using a
Sommerfeld-Watson transformation, to show that

| _ 1 77005172f q A3
S(U)N (U)—ﬁ c Sin7TZ (Z) Z, ( )

where
f(z)=r " 21*NG(ur?. (A4)

Changing variables tp=r ~?= ¢e'® Eq. (A3) can be written
as

-1
2ilnr

I(u)= f:iwﬂ-cot(wln plInT)p?G(up)dp,

(A5)
which is a contour integral along the path for whigh
=&e'® as¢ varies from 0 to 1, ana is a fixed angle obey-

ing 0<w< /2. We shall indicate below how the angleis
to be selected. We define

5(p):p2i7rllnr:§2iﬂ-lln r672wﬂ-llnr_ (A6)
The cot term in Eq(A5) can be written as
1+ 46
_i i oe). (A7)
1-43(p)

Noting that |8(p)|=e 27“/"'<1, we can expand the cot
term as

cotlmInp/inr)=—i

1+ ZnZl p2ni77/In I’j|. (A8)

Thus,
__1(_”7) el - 2nia/inr | vy
'(U)—WL 1+2nzlp p?G(up)dp
(A9)
1 eia) “
5| [T eumdp 2 1w a0
2Inr 0 n=1
where
eiw .
In(u)= J p?M ™" p7G(up)dp. (A11)
0

Consideringw=up,

ueia) .
Wy+2n|¢r/|n rG(W)dW

(A12)

[ (u):uf(1+y+2niwlln r)f
n
0
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Using the definition of the Mellin transformation given in
Eq. (A2) we have

I(u)y=u~@Fyr2nianDiMIG: 1+ y+ 2nim/Inr]— £, (u)},
(A13)

where

gn(u):J’ i W7+2ni7r/|an(W)dW (A14)
ue'®

which vanishes as—o. Here, we have used the fact that,
under the restrictions we impose @ below, the Mellin
transform ofG can be evaluated by rotating the path of in-
tegration from the positive real line onto the rgg', 0

< (<. Finally, we obtain

[’

M[G,l+’)’]+22 u*Zhi‘n’/lnr
n=1

1
I(u)w2lnr ultry

2nim
Gl+y+—

XM
Inr

J . (A15)

We now show that the teril[ G;1+ y+2niw/Inr] decays
exponentially in the limit of largen. It is known, Theorem
4.7.2[35] that for anye>0, x> — «,

M[G;x+iy]=0(exd - (n—e)|y[D,

ly|—oe

(Al6)

under the following assumptions da (here,x=1+ vy and
y=2n/Inr): (1) G(t) is analytic;(2) G(t)=0(t%), t—0
+; (3) G(t)~e d'zr_ SN (Int)"t mt—ox; where
d>0,y>0,y,1, andN(m) finite for eachm. In Eq. (A16)
we definen by

k

n=min( 70,5 | (A17)

where the assumptions d@ are valid in the open sector
s( 7o), defined by

S(71,) ={t|t#0,Jargt)| < 7o}

We have made a further assumption tha&, and vy, are

real since we are concerned here with probability distribu-
tions. For the class of functions that we are interested in here,
whereG=1-F, is a complimentary CDF, the second as-
sumption onG is satisfied witha=0 becauseG(0)=1
=t The anglew above may be set tg— e for e>0. The
validity of the path rotation in evaluating the Mellin trans-
form is demonstrated in the proof of Theorem 4.7.2 in Ref.
[35].

(A18)

Examples

(1) Let the underlying distribution be exponentially dis-
tributed, G(x)=e™*. It is well known that the Mellin trans-
form of an exponential function is B function; M[e *;Zz]
=I'(2). Ast—0,G(t)=0(1). Thus,a=0. As t—o,G(t)
~e ' so d=v=1. Hence, n==/2 and M[G;1+y

016123-7
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+2nim/inr]=0[exp(— (7/2—€)2nx/Inr)],V e=0. The
authors of Ref.[31] show that for the case where
G(x)=e™*, such that  |T(1+ y+2nia/Inr))
=0(exp(—7?n/Inr)), i.e., the case here with=0.

(2) Let the underlying distributions be gamma distributed

with parametersX,k). The cumulative distribution function
is then given by

o\ Kk~ L
G(x)=jX ) e Mdw. (A19)

Substitutingt =Aw,

e ikt
G(x)= f)\xwdt (A20)
1
=~ ——T(k,\X), (A21)
where

F(k,x)=f:e’ttk’ldt (A22)

is the incompletd™ function with parametek. The incom-
pleteI" function has the asymptotic expansion

- r(1—k+ m) 1
T'(k,X)= E: —F(l—k) et
(A23)
so we have
s AN ‘“Z 1\"T(1-k+m) 1
00~ Fig X N Tk
(A24)
This expansion holds in the sects() for ny=3m/2. As
X—0,
G(X)~e ™D, Cxk-1m (A25)
m=0

so comparing Eq(A25) with the assumptions o0&, we find
thatd=\,»=1N(m)=0, andy,,=(m+1—Kk). Therefore,
n=ml2, andM[G;1+ y+2niw/Inr] decays exponentially

as in the first example. We now explicitly calculate the Mel-

lin transform for the underlyind” distributed area distribu-
tions. G(x) is given in Eq.(A19) as

oo)\kwk_l -
G(X):L Tk ©

It is known[36] that given a functiorf(x) with Mellin trans-
formationM[ f(x);z], that

A w

(A26)

M[g(x);z]=z *M[f(x);z+1], (A27)

where

PHYSICAL REVIEW E68, 016123 (2003

g(x)=ij(t)dt. (A28)

So settingf (x) =x*"te X
M[f(x);z]=f:f(x)xz‘1dx (A29)
= f:x”k—Ze—“dx (A30)
=\~ (kD f “we k- 2e Wl (A31)

0
=\~ @kDP(z4+ k-1), (A32)

where we have made use of the substitutioa x. Thus, by
Eq. (A27)

M[g(x);z]=z A~ 0T (z+k) (A33)

and thus we obtain
M[G:z]=z"1 NG A34
[G;z]=z""\ T (A34)

The aim here is to show that the tail probability asymptoti-
cally exhibits power-law behavior in the variahble Refer-
ring to Eq. (A1), we note that the sum contains harmonic
terms inu, and we now illustrate that these terms are for a
special case small, indicating that deviation from power-law
behavior is small. Noting the expression i G;z], given

in Eq. (A34), we have

M[G;1+ y+2niw/inr]
M[G;1+7]

(L2 T (k+ 14 y+ 2nim/In)
 (1+y+2niw/inr) T(k+1+7y) '
(A35)

which can be written, using the Weierstrass form for the
function[37] as

T(x+iy) xe '™ o eVl
I'(x)  x+iy 1;[ L iy (A36)
X+ €

where C=0.577256 ... is theEuler-Mascheroni constant.
The magnitude of the ratio of terms is thus

I'(x+ iy)‘ _ |X| ﬁ A37)
rx | Vx2+y? (=1 y
X+

016123-8
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- 1 -  M[G;1+y+2niw/Inr]
_ - 2 u*anﬂn'/lnr , A40
(130 y 2’ (A38) nzl M[G;1+y] (A40)
1+ X+ and the magnitude of individual terms in this sum can be

evaluated using EqA39). Because all the terms in the infi-
and so nite product in Eq(A39) are less than unity, evaluation of
this product with any finite number of terms yields an upper
bound. Using typical values,

M[G;1+ y+2nia/In r]‘
M[G;1+y] |

2m/inr~1.3, (A41)

H _ 14 y= p,~0.95, (A42)

2na/inr\? (= 2nw/inr |2 _ o
and takingh=1 andk=2, an upper bound retaining five

1ty k+1+7+€ terms in the product iSlM[G;1+ y+2ni#m/Inr/M[G;1

(A39) +7]/<0.48 (h=1), <0.16 (h=2), and<0.06 (h=3). For
larger n, the values approach zero rapidly using E416),
The deviation from power-law behavior depends on the magindicating that the harmonic terms cause only small devia-

nitude of tion from power-law behavior.
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