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Power-law tail probabilities of drainage areas in river basins
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We examine the appearance of power-law behavior in rooted tree graphs in the context of river networks. It
has long been observed that the tails of statistical distributions of upstream areas in river networks, measured
above every link, obey a power-law relationship over a range of scales. We examine this behavior by consid-
ering a subset of all links, defined as those links which drain complete Strahler basins, where the Strahler order
defines a discrete measure of scale, for self-similar networks with both deterministic and random topologies.
We find an excellent power-law structure in the tail probabilities for complete Strahler basin areas, over many
ranges of scale. We show analytically that the tail probabilities converge to a power law under the assumptions
of ~1! simple scaling of the distributions of complete Strahler basin areas and~2! application of Horton’s law
of stream numbers. The convergence to a power law does not occur for all underlying distributions, but for a
large class of statistical distributions which have specific limiting properties. For example, underlying distri-
butions which are exponential and gamma distributed, while not power-law scaling, produce power laws in the
tail probabilities when rescaled and sampled according to Horton’s law of stream numbers. The power-law
exponent is given by the expressionf5 ln(Rb)/ln(RA), whereRb is the bifurcation ratio andRA is the Horton
area ratio. It is commonly observed thatRb'RA in many river basins, implying that the tail probability
exponent for complete Strahler basins is close to 1.0.
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I. INTRODUCTION

Scaling theories play an important role in quantification
scale invariance in physical systems. From the classical s
ies of turbulence@1,2# to complex system analyses@3,4#, the
appearance of power-law behavior has been seen as the
nature of scale invariance. Theoretical investigations of
scaling properties of natural hydrological and geomorp
logical systems have provided a wealth of insights into
development of complex system analyses and the descrip
of emergent patterns. Geomorphology provides the basis
this paper, but the results presented here may be applicab
a large variety of other physical systems.

River network topology can be modeled as rooted bin
tree graphs, where water flows from small branches i
larger branches across a large range of spatial scales.
works are composed of links and nodes: Links in the t
graph represent individual river channels and, when t
channels combine at their downstream ends, they form
node. Nodes have two upstream links draining directly i
them and one link draining out. The entire collection of lin
and nodes forms a treelike structure, with no loops, so
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there is a unique path between any two links in the netwo
Strahler streams, or simply streams, are composed of co
tions of continuous links and are defined according to
Horton-Strahler ordering convention. This convention a
signs anorder to each stream, which we use as a repres
tation of the scale of the stream. The leaves or sources~links
which do not have any links upstream of them! are defined to
be of order 1. Higher-order streams are defined in terms
the orders of the streams which drain into them. When t
streams, which have same orders, combine at a node, the
downstream of that node is one order higher. When t
streams of different orders combine, the downstream l
takes the greater order of the upstream links. Hence, if
order-1 streams come together, they form an order-2 stre
If an order-2 stream and an order-1 stream come together
downstream link is order 2, extending the stream. Comp
Strahler basins are sub-basins which drain directly into
basin that has the higher order.

The scaling properties of topologic and geometric n
work properties have been extensively studied in river
sins. Models of river networks have been developed ba
on diffusion limited aggregation@5–7#, random walk models
@8–10#, thermodynamics through principles of optimizatio
@11–14#, as well as other physically based models. In ad
tion, power-law scaling exponents have been derived in
context of fractal geometry of river networks@15,16#. Vari-
ous measures of scale invariance have been utilized in
©2003 The American Physical Society23-1
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analysis of drainage patterns, particularly in the context
self-similarity and self-affinity. Some measures of scale
variance deal with the scaling behavior of network branch
structure, or network topology, independent of geome
constraints. Scale invariance in network topology is refer
to as topological self-similarity, and has been formulated
terms of both the average branching structure~mean self-
similarity or Tokunaga self-similarity! and the scaling of dis-
tributions of the branching structure~statistical self-
similarity!.

There are three major analytic topological theories
river networks which exhibit topological self-similarity
namely, the well-known random topology model@17,18#, the
Tokunaga self-similar network model@19,20#, and the ran-
dom self-similar network~RSN! model@21,22#. The random
topology model is a special case of the more general Gal
Watson branching processes@23#, while the Tokunaga mode
is based on the average self-similar behavior of river n
works, and is a special case of the more general clas
mean self-similar networks@21#.

The RSN model generates topologically variable n
works that exhibit mean topological self-similarity and, as
special case, the Tokunaga self-similarity. In addition, n
works generated by the RSN model show simple scaling
the distributions of many topologic and geometric variabl
with the Strahler order as the appropriate scale param
The Strahler ordering is a natural way to collect the links
a nested network into streams which represent different
crete scales. For instance, the RSN model predicts tha
statistical distributions of the basin area at different sca
~Strahler orders! have the same functional form, but are re
caled by a constant@22#. This type of scale invariance o
statistical distributions is called distributional simple scali
~DSS!. The existence of DSS for complete Strahler ba
areas and the assumption that Horton’s law of stream n
bers~defined below! holds predicts that the tail probabilitie
of cumulative upstream areas of complete Strahler ba
exhibit a power-law form with an exponent of ln(Rb)/ln(RA),
and the demonstration of this result is the focus of this pa

It has long been recognized that the ratio of the numbe
streams of successive orders converges to a constant. T
generally known as Horton’s law of stream numbers. T
law of stream numbers is an asymptotic result, with conv
gence in the following manner. Denote the number
streams of orderv in a basin of total orderV as Nv

(V) .
Horton’s law of stream numbers is then written as

Nv
(V)

Nv11
(V)

→Rb , V→`, ~1!

whereRb is the bifurcation ratio, which ranges from abo
4.1 to 4.7 in natural river networks@24#. Equation~1! is valid
for ordersv!V in the limit the total basin orderV→`.
Note that Eq.~1! defines the Horton law of stream numbe
as an asymptotic result, not in the limitv→`; but rather
there is a convergence of the ratio of the number of s
basins which may be of low order, but are nested in an o
all basin which gets very large. In practice, this limit
01612
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reached rapidly for basins withV.5 or so. We use Horton’s
law of stream numbers as expressed in Eq.~1! to sample
rescaled distributions of basin area in our derivation
power-law tail probabilities in this paper. Horton’s law o
stream numbers is an example of the classic Horton la
which relate the average values of various topologic, g
metric, and geomorphologic variables at different scales.
instance, the Horton law for basin area is written in a fo
similar to Eq.~1!,

Āv
(V)

Āv21
(V)

→RA , V→`, ~2!

where Āv
(V) is the average basin area at scalev in a basin

with total orderV andRA is the Horton area ratio.
Distributional simple scaling~DSS! implies that the sta-

tistical distribution of a given variable measured at a giv
scale is a rescaled version of some underlying distribut
which is independent of scale. In the context of river basi
the Strahler order is a natural choice for scale parameter,
the rescaling constant has been shown to be the approp
Horton ratio@22#. For instance, consider basin magnitude
a typical topological variable. The magnitude is the to
number of first-order streams in the basin and can be con
ered as the topological equivalent of basin area. In a la
river basin of total orderV, there will be many sub-basins o
lower order. Fixing a given orderv,V, the distribution of
the basin magnitudeMv

(V) measured over all orderv sub-
basins is a rescaled version of some underlying distribut
M̃ , if the distributional simple scaling holds. Statistical di
tributions at different scalesv and k can then be related
since both are rescaled versions ofM̃ . We write

Mv
(V)5

d

RM
v2kMk

(V) , v,k,V, V→` ~3!

to denote distributional simple scaling, where5
d

means
equality in distribution andRM is a rescaling constant inde
pendent of orderv @22#. There is good evidence that natur
river networks exhibit distributional simple scaling for man
topologic and geometric variables@25#. Classic Horton laws
are derived by taking the expectation of equations, such
Eq. ~3!, and refers to relationships of means across sc
rather than of entire distributions. Scale invariance of sta
tical distributions extends to the geometric and geomorp
logic properties of river basins as well. For example, stre
lengths and basin areas exhibit distributional simple sca
@25#, as does the maximum of the width function@26# with
the Strahler order playing the role of the scale parame
DSS of hydrologic variables is a generalization of Horton
laws, which may be obtained by taking the expectation
equations such as Eq.~3!.

It has also been observed that the probability of e
ceedence for cumulative upstream area above all links
network, sometimes also referred to as the cumulative a
distribution ~CAD!, exhibits power-law behavior, written a

P~A.a!;a2u, ~4!
3-2
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whereA represents the area above a link chosen at ran
from all links in the network andu is empirically observed to
be close to 0.43@27#. Power-law scaling of tail probabilities
is generally seen as a signature of the scale invarianc
topography in river basins@25,28,29#. The power-law behav-
ior of tail probabilities for the area above all links will not b
addressed in this paper, rather we focus our examination
the power-law behavior of exceedence probabilities for co
plete Strahler basins only. Complete Strahler basins a
subset of all sub-basins, consisting of basins which dr
directly into streams that are of a higher order, and comp
more than half of all sub-basins in a given basin. See Se
below.

We show below that the power-law behavior in the t
probabilities for complete Strahler basin areas~defined be-
low! is also observed, written in a form similar to Eq.~4!,

P~Av
(V).a!;a2f, ~5!

whereAv
(V) represents the area of a randomly chosen co

plete Strahler basin of orderv in a network of total orderV,
and the scaling exponentf5 ln(Rb)/ln(RA). Model predic-
tions of the random topology model, Tokunaga self-simi
networks, and random self-similar networks predict thatRb
5RA , which implies thatf51.0. We show here that th
power-law behavior in Eq.~5! is a consequence of Horton
law of stream numbers and distributional simple scaling
complete Strahler basin areas.

Recently, the authors of Refs.@30–32# examined the dis-
tributional scaling relationships in river networks. Amon
other results, they considered fluctuations and joint prop
ties of basin areas and stream lengths, distributional pro
ties of side-tributary statistics, and theoretical models
Hack’s law and their relationship to the CAD power-la
scaling. They also provide an analytic derivation of pow
law scaling for main stream lengths under the assumptio
exponential distributions of stream segment lengths. In c
trast, we concentrate in this paper on the derivation
power-law scaling due to the distributional simple scaling
basin areas and Horton’s law of stream numbers, indep
dent of a particular choice of statistical distribution.

The authors of Ref.@33# observed tail probability scaling
exponents near 1.0 where they only considered a subset
basins. They defined main basins by considering links m
ing upstream from the outlet in the direction of the great
contributing area. This selection method chooses essent
complete basins, but also includes links along the m
streams of those basins. The existence of power-law sca
with an exponent near 1.0 for this subset of basins is poss
a further indication that the power-law scaling seen for
the links in a network is inherited from the more fundame
tal power-law scaling of complete Strahler basins deriv
here.

II. TAIL PROBABILITIES OF COMPLETE BASIN AREAS
FOR DETERMINISTIC SELF-SIMILAR NETWORKS

We begin by examining the behavior of tail probabiliti
for complete Strahler basins in the case of deterministic
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generated self-similar networks. Deterministic self-simi
networks have the property that the branching structure o
basins of a given order is identical. Thus, there is no way
discuss distributions as a function of scale for determinis
networks. However, we can use the identical nature of
topology to derive the scaling exponent for the tail probab
ity. In the derivation below, we use a basin magnitude a
proxy for basin area.

Complete Strahler basins are defined as the basins
stream from the links which drain directly into the links th
have a higher Strahler order. For instance, a side tributar
the main stream in a basin is a complete Strahler basin,
cause the Strahler order of the link at the outlet of the s
tributary is less than the order of the main stream. Howev
sub-basins above a link in the main stream are not comp
Strahler basins, because they drain into links which have
same Strahler order. This choice of restriction is not ar
trary. Complete basins represent naturally defined elemen
units at a given discrete scale, defined by the Strahler or
This is important because, with the definition of a discre
scale parameter, it is possible to speak of statistical distr
tions of variables as a function of scale, as will be done
Sec. III. This is not possible if a continuous scale parame
such as the basin magnitude, is used. It has been shown
the statistical distributions of the complete Strahler ba
area exhibit distributional simple scaling@26#.

The authors of Refs.@34,24# examined the topologica
equivalent of the tail probability exponentu for basins up-
stream of every link in a network~the CAD exponent! for
deterministic self-similar river networks. They found that t
scaling exponent is given in terms of the Horton ratios fo
number of links per stream,RC , and the bifurcation ratioRb
as

u512
ln~RC!

ln~Rb!
. ~6!

The argument in Ref.@24# uses the equivalence of probab
listic statements regarding the basin magnitude and
Strahler order in deterministic self-similar networks to deri
Eq. ~6!. We extend the argument to complete Strahler bas
below to show that for deterministic self-similar networ
the complete basin tail probability scaling exponent isf
51.0.

Consider the probability that a complete Strahler bas
chosen at random in a deterministic self-similar network
total order V, has a basin magnitudeM less than some
threshold valuem, where we have dropped the superscr
(V) for notational simplicity. The probability is equal to th
probability that the basin chosen has an orderW less than the
corresponding threshold orderv due to the deterministic na
ture of the network~the topology of every orderv network is
identical!. In other words, the two statements of probabili

P~M,m!⇔P~W,v! ~7!

are equivalent, whereM is the magnitude of a randoml
chosen complete Strahler basin,W is the order of a randomly
chosen complete basin, andm and v are the thresholds fo
3-3
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VEITZER, TROUTMAN, AND GUPTA PHYSICAL REVIEW E68, 016123 ~2003!
magnitude and order, respectively, against which the
probabilities are calculated. The probability that a random
chosen basin has an order less than some thresholdv is
simply the total number of basins with order less thanv
normalized by the total number of basins,

P~W,v!5 (
k51

v21

Nk
(V)Y (

k51

V

Nk
(V) . ~8!

Using the asymptotic expression for a number of stream

Nk
(V);RB

V2v11 ,

valid for a large total network orderV, Eq. ~8! can be re-
written as

P~W,v!5FRB
V11 (

k51

v21 S 1

RB
D kG Y FRB

V11(
k51

V S 1

RB
D kG .

~9!

Defining p[(1/RB) Eq. ~9! can be written in the standar
form of a geometric series and summed to become

P~W,v!5F (
k50

v21

pk21G Y F (
k50

V

pk21G ~10!

5F12pv

12p
21G Y F12pV11

12p
21G

~11!

5@12pv21#Y @12pV#, ~12!

which can be simplified, under the condition thatV→`, to
become

P~W,v!512pv21. ~13!

Hence, the probability of exceedence for the Strahler orde

P~W>v!5pv21, ~14!

which is a geometric distributionwith parameter (12p).
For a large total network order, the magnitude as a func
of order obeys the asymptotic relation

m~v!;RB
v .

Inverting this relationship the order can be expressed
terms of the magnitude as

v~m![
ln~m!

ln~RB!
. ~15!

Inserting Eq.~15! into Eqs.~14! and ~7! gives the relation

P~M>m!}p$ ln(m)/ ln(RB)%21. ~16!

Recalling the definition ofp, Eq. ~16! can be simplified to
01612
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y
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in

P~M>m!5S 1

RB
D ln(m)/ ln(RB)21

5RBRB
2 ln(m)/ ln(RB)

5RBR
B

2 lnRB
(m)

5RB~1/m!, ~17!

indicating that the scaling exponent should have the va
f51.0.

III. TAIL PROBABILITIES FOR COMPLETE STRAHLER
BASIN AREAS FOR SELF-SIMILAR NETWORKS

WITH VARIABLE TOPOLOGIES

By exploiting the equivalence of probability statements
deterministic self-similar networks, we have shown that
tail probability for complete Strahler basin areas has an
ponent off51.0. However, natural networks exhibit topo
logical variability, in which sub-basins of the same Strah
order have different branching structures. We derive be
the convergence to a power law of the tail probabilities
complete Strahler basin areas for a large class of underl
basin area distributions. This derivation is valid under t
assumptions that the distributions of the complete Stra
basin area exhibit distributional simple scaling, and the
plication of Horton’s law of stream numbers. The DSS
complete Strahler basin areas has been observed in na
networks@22#. In addition, the RSN model predicts DSS fo
complete basin areas. We express distributional simple s
ing as

Av
(V)

RA
v21

5
d

A1;FA , ~18!

where Av
(V) is the statistical distribution of complete bas

area at scalev, RA is the Horton area ratio,A1 is the under-
lying distribution of basin area, which we denote asFA , and

5
d denotes the equality in distribution. We will also use t
empirically observed relationship between the number
streams at different scales, referred to as Horton’s law
stream numbers,@see Eq. ~1!#. Given the distributional
simple scaling for complete Strahler basin areas, we pic
complete stream at random, with probabilityNv

(V)/NT
(V) ,

where

Nv
(V)5N1

(V)~Rb
21!v21,

NT
(V)5 (

v51

V

Nv
(V) . ~19!

HereNT
(V) is the total number of streams in the network. T

resulting distribution of all complete basin areasAT
(V) is a

mixture over the order area distributions
3-4
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P@AT
(V).u#5 (

v51

V

P@AT
(V).uuAT

(V)5Av
(V)#P@AT

(V)5Av
(V)#

~20!

5 (
v51

V Nv
(V)

NT
(V)

P@Av
(V).u#. ~21!

Substitution from Eqs.~18! and ~19! gives

P@AT
(V).u#5

N1
(V)

NT
(V) (

v51

V

~Rb
21!v21F12FAS u

RA
v21D G

~22!

5
N1

(V)

NT
(V) (

v50

V21

~Rb
21!v@12FA„~RA

21!vu…#.

~23!

We rewrite Eq.~22! in the limit V→`,

P@AT
(V).u#[

N1
(V)

NT
(V)

S~u!5
N1

(V)

NT
(V) (

i 50

`

r 2 i (11g)G~ur2 i !,

~24!

where

G~x!512FA~x!, ~25!

r 5RA , ~26!

r 11g5Rb , ~27!

11g5
ln Rb

ln RA
, ~28!

and we identifyv5 i for notational convenience. We dem
onstrate in the Appendix that for a class of underlying dis
bution functionsG, except for a term involving small har
monic corrections, the sumS(u) in Eq. ~24!, and hence the
tail probability for complete Strahler basin areas, takes
asymptotic form

S~u!;
1

u11g
, ~29!

predicting that the tail probabilities for complete basin are
exhibit a power-law behavior with the exponent

f5
ln Rb

ln RA
. ~30!

Figure 1 shows the production of a power-law tail beha
ior through DSS and Horton’s law of stream numbers. In
vidual distributions of basin areaAv

(V) at each scalev are
shown, colored according to scale. The individual distrib
tions of basin area are rescaled versions of the underl
distributionFA5A1 which is gamma distributed and they d
not exhibit a power-law tail behavior. Each individual dist
01612
-

e
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-
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bution is sampledNv
(V) times and the samples are collect

into a single distribution, as shown in the figure. The co
posite distribution shows an excellent power-law tail beh
ior over a large range of scales. In the figure,RA5Rb54.2
and Nv

(V) is chosen to be the integer closest toRb
V2v . The

value of the scaling power-law scaling exponent is close
1.0, as indicated by the equality ofRb andRA . Similar simu-
lations withRbÞRA show a very good correspondence wi
the expression given in Eq.~30!.

Figure 2 shows the power-law tail behavior for comple
Strahler basins in the Flint river in Georgia, USA. The Fli
basin covers'6500 km2 and has a total order 7 when ex
tracted from the USGS 1° digital elevation models. T
power-law behavior is observed over a large range of sca
Figure 2 also shows the tail behavior for upstream ar
above all links in the network for comparison. Note th
there is also a range of scales over which an approxim
power-law behavior is seen. However, there is more de
tion from the power-law behavior and a pronounced drop
at large scales compared to complete Strahler basins.

FIG. 1. ~Color! Demonstration of the generation of power-la
tails in the probability of exceedences. Each rescaled distributio
shown ~here gamma distributed!, colored according to its scale
~Strahler order!. The number of points in the individual distribu
tions represent the number of samples according to Horton’s law
stream numbers. The samples are gathered together in a singl
tribution which is seen to exhibit a power-law behavior.
3-5
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Table I shows a comparison of various predicted and
served values for four large basins in the United States
the table, empirically calculated Horton ratios for a numb
of streamsRb , basin areaRA , basin magnitudeRM , and
number of links per streamRC are provided for comparison
fA is the estimated scaling exponent for the tail probabilit
for basin area, both calculated according to Eq.~30!, while
fM is the scaling exponent for basin magnitude, calcula
in a manner similar to Eq.~30!, but with magnitude taking
the place of area. The exponentf is the empirically esti-
mated basin area scaling exponent for complete Strahler

FIG. 2. ~Color! Power-law tail behavior for the probability o
exceedences for complete Strahler basins in the Flint river ba
The slope is consistent with that predicted by the analytic the
For comparison, the probability of exceedences for all links in
Flint river basin is shown in the lower figure.

TABLE I. Comparison of tail probability variables for four em
pirical basins.

Basin Rb RA RM RC fA fM f

1 4.45 4.90 4.62 2.61 0.94 0.98 0.91
2 4.54 4.70 4.43 2.59 0.98 1.02 0.94
3 4.40 4.85 4.52 2.41 0.94 0.98 0.93
4 4.56 4.67 4.42 2.45 0.98 1.02 0.99
01612
-
In
r

s

d
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sins. As can be seen from the table, the basin area Ho
ratio RA is generally greater thanRb andRM , by as much as
about 10%. However, the predictions for the scaling ex
nentsfA andfM , based on the analysis of this section, a
close to the observed values.

IV. SUMMARY

Understanding the key geometric properties of river n
works is essential for understanding how the physical p
cesses work to shape land surfaces. One recently obse
property is the power-law scaling behavior of the tail pro
abilities for cumulative upstream areas, which is an indica
of the scale invariance of land surface topography. We ex
ined here the underlying statistical and scaling structure
complete Strahler basin areas, which gives rise to a pow
law scaling in tail probabilities. We found that when on
complete Strahler basins are considered, power-law tail p
abilities for the upstream area arise as a consequence of
tributional simple scaling of basin areas coupled with H
ton’s law of stream numbers. The scaling exponent
complete basins is well predicted by the ratio of the log
rithms of the bifurcation ratio to the Horton ratio for bas
areas.

The existence of power-law scaling as a direct con
quence of distributional simple scaling may indicate that
power-law scaling observed for areas above every link i
network can also be understood in a simple scaling fram
work. Such a formulation remains an open problem.
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APPENDIX

We show here that the sum given in Eq.~24! asymptoti-
cally takes the form

(
i 50

`

r 2 i (11g)G~ur2 i !

;
1

ln r

1

u11g FM @G;11g#

12(
n51

`

u22nip/ ln rM S G;11g1
2nip

ln r D G ,

~A1!

whereG(ur2 i)512FA(ur2 i) is the underlying cumulative
distribution function~CDF! andM @G;z# is the Mellin trans-
form:

M @G;z#5E
0

`

xz21G~x!dx. ~A2!

in.
y.
e
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The derivation follows the similar lines of Ref.@31#, but is a
generalization from the case whereG(x)5e2x which they
derived. Under certain assumptions on the functional form
G explained below, the functionM @G;11g#5O(1), while
M @G;11g12nip/ ln r#5O(e2n) asn→`. Thus, the sum in
question converges to a power law with exponent 11g. We
begin by following the argument of Ref.@31#, using a
Sommerfeld-Watson transformation, to show that

S~u!;I ~u!5
1

2p i RC

p cospz

sinpz
f ~z!dz, ~A3!

where

f ~z!5r 2z(11g)G~ur2z!. ~A4!

Changing variables tor5r 2z5jeiv Eq. ~A3! can be written
as

I ~u!5
21

2i ln r E0

eiv

p cot~p ln r/ ln r !rgG~ur!dr,

~A5!

which is a contour integral along the path for whichr
5jeiv asj varies from 0 to 1, andv is a fixed angle obey-
ing 0,v,p/2. We shall indicate below how the anglev is
to be selected. We define

d~r!5r2ip/ ln r5j2ip/ ln re22vp/ ln r . ~A6!

The cot term in Eq.~A5! can be written as

2 i
11d~r!

12d~r!
. ~A7!

Noting that ud(r)u5e22pv/ ln,r,1, we can expand the co
term as

cot~p ln r/ ln r !52 i F112(
n51

`

r2nip/ ln r G . ~A8!

Thus,

I ~u!5
21~2 ip!

2p ln r E
0

eivF112(
n51

`

r2nip/ ln r GrgG~ur!dr

~A9!

5
1

2 ln r F E
0

eiv

rgG~ur!dr12(
n51

`

I n~u!G , ~A10!

where

I n~u!5E
0

eiv

r2nip/ ln rrgG~ur!dr. ~A11!

Consideringw5ur,

I n~u!5u2(11g12nip/ ln r )E
0

ueiv

wg12nip/ ln rG~w!dw.

~A12!
01612
f

Using the definition of the Mellin transformation given i
Eq. ~A2! we have

I n~u!5u2(11g12nip/ ln r )$M @G;11g12nip/ ln r #2zn~u!%,
~A13!

where

zn~u!5E
ueiv

`

wg12nip/ ln rG~w!dw ~A14!

which vanishes asu→`. Here, we have used the fact tha
under the restrictions we impose onG below, the Mellin
transform ofG can be evaluated by rotating the path of i
tegration from the positive real line onto the rayzeiv, 0
<z,`. Finally, we obtain

I ~u!;
1

2ln r

1

u11g H M @G;11g#12(
n51

`

u22nip/ ln r

3M FG;11g1
2nip

ln r G J . ~A15!

We now show that the termM @G;11g12nip/ ln r# decays
exponentially in the limit of largen. It is known, Theorem
4.7.2 @35# that for anye.0, x.2a,

M @G;x1 iy #5O„exp@2~h2e!uyu#…, uyu→`
~A16!

under the following assumptions onG ~here,x511g and
y52np/ ln r): ~1! G(t) is analytic; ~2! G(t)5O(ta), t→0
1; ~3! G(t);e2dtn(m50

` (n50
N(m)Cmn(ln t)nt2gm,t→`; where

d.0,n.0,gm↑`, andN(m) finite for eachm. In Eq. ~A16!
we defineh by

h5minS h0 ,
p

2n D , ~A17!

where the assumptions onG are valid in the open secto
s(h0), defined by

s~ho!5$tutÞ0,uarg~ t !u,h0%. ~A18!

We have made a further assumption thatd,a, and gm are
real since we are concerned here with probability distrib
tions. For the class of functions that we are interested in h
whereG512FA is a complimentary CDF, the second a
sumption onG is satisfied witha50 becauseG(0)51
5t0. The anglev above may be set toh2e for e.0. The
validity of the path rotation in evaluating the Mellin tran
form is demonstrated in the proof of Theorem 4.7.2 in R
@35#.

Examples

~1! Let the underlying distribution be exponentially di
tributed,G(x)5e2x. It is well known that the Mellin trans-
form of an exponential function is aG function; M @e2x;z#
5G(z). As t→0,G(t)5O(1). Thus, a50. As t→`,G(t)
;e2t so d5n51. Hence, h5p/2 and M @G;11g
3-7
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12nip/ln r#5O@exp„2(p/22e)2np/ ln r…#,; e>0. The
authors of Ref. @31# show that for the case wher
G(x)5e2x, such that uG(11g12nip/ ln r)u
5O„exp(2p2n/ln r)…, i.e., the case here withe50.

~2! Let the underlying distributions be gamma distribut
with parameters (l,k). The cumulative distribution function
is then given by

G~x!5E
x

`lkwk21

G~k!
e2lwdw. ~A19!

Substitutingt5lw,

G~x!5E
lx

` e2ttk21

G~k!
dt ~A20!

5
1

G~k!
G~k,lx!, ~A21!

where

G~k,x!5E
x

`

e2ttk21dt ~A22!

is the incompleteG function with parameterk. The incom-
pleteG function has the asymptotic expansion

G~k,x!5xk21e2x (
m50

`

~21!m
G~12k1m!

G~12k!

1

xm
,

~A23!

so we have

G~x!;
lk21

G~k!
xk21e2lx (

m50

` S 21

l D m G~12k1m!

G~12k!

1

xm
.

~A24!

This expansion holds in the sectors(h0) for h053p/2. As
x→`,

G~x!;e2lx (
m50

`

Cmxk212m, ~A25!

so comparing Eq.~A25! with the assumptions onG, we find
that d5l,n51,N(m)50, andgm5(m112k). Therefore,
h5p/2, andM @G;11g12nip/ ln r# decays exponentially
as in the first example. We now explicitly calculate the M
lin transform for the underlyingG distributed area distribu
tions.G(x) is given in Eq.~A19! as

G~x!5E
x

`lkwk21

G~k!
e2lwdw. ~A26!

It is known@36# that given a functionf (x) with Mellin trans-
formationM @ f (x);z#, that

M @g~x!;z#5z21M @ f ~x!;z11#, ~A27!

where
01612
-

g~x!5E
x

`

f ~ t !dt. ~A28!

So settingf (x)5xk21e2lx,

M @ f ~x!;z#5E
o

`

f ~x!xz21dx ~A29!

5E
0

`

xz1k22e2lxdx ~A30!

5l2(z1k21)E
0

`

wz1k22e2wdw ~A31!

5l2(z1k21)G~z1k21!, ~A32!

where we have made use of the substitutionw5lx. Thus, by
Eq. ~A27!

M @g~x!;z#5z21l2(z1k)G~z1k! ~A33!

and thus we obtain

M @G;z#5z21l2z
G~z1k!

G~k!
. ~A34!

The aim here is to show that the tail probability asympto
cally exhibits power-law behavior in the variableu. Refer-
ring to Eq. ~A1!, we note that the sum contains harmon
terms inu, and we now illustrate that these terms are fo
special case small, indicating that deviation from power-l
behavior is small. Noting the expression forM @G;z#, given
in Eq. ~A34!, we have

M @G;11g12nip/ ln r #

M @G;11g#

5
~11g!l22nip/ ln r

~11g12nip/ ln r !

G~k111g12nip/ ln r !

G~k111g!
,

~A35!

which can be written, using the Weierstrass form for theG
function @37# as

G~x1 iy !

G~x!
5

xe2 iCy

x1 iy )
,51

`
eiy /,

11
iy

x1,

, ~A36!

where C50.577 216 . . . is theEuler-Mascheroni constant
The magnitude of the ratio of terms is thus

UG~x1 iy !

G~x!
U5 uxu

Ax21y2
)
,51

` 1

A11S y

x1,
D 2

~A37!
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5 )
,50

` 1

A11S y

x1,
D 2

, ~A38!

and so

UM @G;11g12nip/ ln r #

M @G;11g#
U

5
l

A11S 2np/ ln r

11g
D 2

)
,50

` 1

A11S 2np/ ln r

k111g1,
D 2

.

~A39!

The deviation from power-law behavior depends on the m
nitude of
ro

le

te

.

,

I.

01612
-

2(
n51

`

u22nip/ ln r
M @G;11g12nip/ ln r #

M @G;11g#
, ~A40!

and the magnitude of individual terms in this sum can
evaluated using Eq.~A39!. Because all the terms in the infi
nite product in Eq.~A39! are less than unity, evaluation o
this product with any finite number of terms yields an upp
bound. Using typical values,

2p/ ln r'1.3, ~A41!

11g5fA'0.95, ~A42!

and takingl51 and k52, an upper bound retaining fiv
terms in the product isuM @G;11g12nip/ ln r#/M@G;1
1g#u,0.48 (n51), ,0.16 (n52), and,0.06 (n53). For
larger n, the values approach zero rapidly using Eq.~A16!,
indicating that the harmonic terms cause only small dev
tion from power-law behavior.
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